IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 20, NO. 5, SEPTEMBER 2005

Improvement of EMI Filter Performance
With Parasitic Coupling Cancellation

Shuo Wang, Student Member, IEEE, Fred. C. Lee, Fellow, IEEE, Willem Gerhardus Odendaal, Member, IEEE,
and Jacobus Daniel van Wyk, Fellow, IEEE

Abstract—In this paper, critical parasitic couplings in EMI
filters are first identified. Based on the understanding of filter
parasitics, methods are proposed to improve EMI filter perfor-
mance by canceling critical couplings. A cancellation inductor
is then integrated with capacitors to cancel the mutual coupling
between two capacitors and the equivalent series inductance
(ESL) of the integrated capacitor. The proposed method is ap-
plied to both rectangular and tubular capacitors. Two different
integration approaches are also compared. Finally, prototypes
are built and tested for both one-stage and two-stage EMI fil-
ters. Experimental results show the proposed mutual coupling
cancellation technique can drastically improve EMI filter high
frequency performance.

Index Terms—Electromagnetic interference (EMI) filter, equiv-
alent series inductance (ESL), integrated capacitor with cancella-
tion inductor, mutual coupling cancellation, parasitic coupling.

1. INTRODUCTION

ARASITIC parameters affect electromagnetic interfer-

ence (EMI) filter performance significantly in the high
frequency (HF) range. Generally, there are two types of par-
asitic parameters: self-parasitics and mutual parasitics. The
self-parasitics include the equivalent series inductance (ESL)
and equivalent series resistance (ESR) of capacitors, equivalent
parallel capacitance (EPC) and equivalent parallel resistance
(EPR) of inductors. The mutual parasitics exist between two
components, between a component and the printed circuit
board (PCB) layout and between PCB traces. For the differen-
tial mode (DM) EMI filter shown in Fig. 1, the circuit model
including all these parasitics had been built in [1] and [3] and is
shown in Fig. 2.

In Fig. 2, the ESR1, 2 and ESL1, 2 are the self-parasitics of
the two capacitors. EPC and EPR are the self-parasitics of the
inductor. L; and Ly, are the self-inductances of the input and
output trace loops. The mutual parasitics can be divided into five
categories as follows.

1) Coupling between inductor and capacitors: M; and M.

2) Coupling between two capacitors: M.

3) Coupling between inductor and trace loops: M4 and M.

4) Coupling between ground plane and inductor: M7 and C,,.

5) Coupling between trace loops: M.
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Fig. 3. Effects of parasitic parameters on EMI filter performance (Insertion

voltage gain when both source and load are 50 €2).

The effects of parasitic parameters on EMI filter performance
are illustrated in Fig. 3. In Fig. 3, three insertion voltage gains
with 50 €2 source and load impedances are compared by sim-
ulation, where insertion voltage gain is defined as the ratio of
the port voltage at the load side without the filter to that with
the filter. The self-parasitics curve is the simulation result of
the filter model including only the self-parasitics. Obviously, in
the HF range, the self-parasitics make EMI filter performance
worse than the ideal case; however the measured curve shows
that the mutual parasitics finally determine the EMI filter HF
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performance. Based on this comparison, EMI filter performance
can be significantly improved by controlling parasitic couplings.

Reference [5] introduced a network method to cancel the ESL
of capacitors. References [7] and [8] employed mutual induc-
tance to cancel the ESL of capacitors. All of these methods are
for the reduction of self-parasitics. Since EMI filter is a coupled
system, reduction of mutual parasitics is even more important
than the reduction of self-parasitics. In fact, experiments show
that if mutual couplings are not efficiently minimized, efforts on
reducing self-parasitics could be in vain. Before these methods
can be effectively applied to filter design, effects of mutual cou-
plings must be minimized. Reference [2] shielded two capac-
itors and enlarged the distance between components to reduce
the couplings, but this was at the cost of larger size and extra
parasitics. In [1] and [2], inductor windings were rotated by 90°
to make magnetic flux symmetrical to the center line of capaci-
tors and trace loops. As shown in Fig. 4, after windings are ro-
tated by 90°, the net magnetic flux linking capacitors Cy, C2 and
trace loops Ly, Lo are greatly reduced so that mutual induc-
tances M1, My, My, and M5 can be reduced by more than 90%.
The improvement of these two methods on filter performance is
still limited [1], [2]. In order to significantly improve EMI filter
performance, critical parasitic couplings must be identified and
greatly reduced.

The effect of mutual inductance M; on capacitor C; is equiv-
alent to an inductance M; in series with the ESL of capacitor
Cs [1]. The same rule holds true for the effect of M5 on C;. Be-
cause My and M> can be several times larger than the ESL of
the capacitors [1], they are critical to the capacitor performance.
The effect of My or M5 can also be equivalent to an inductance
in series with the ESL of the capacitors; however they are not
critical because they are much smaller than M; and Ms. Due to
the large magnitude difference between the HF currents on the
branches C; and Cs, the effect of M3 on capacitor performance
is significant [1]. The mutual inductance Mg between input and
output trace loops also plays an important role in filter perfor-
mance for the same reason [1]. For M7 and C,, they are not
critical to filter performance [1].

Experiments in [1] showed that, in HF range, after the in-
ductor windings are rotated by 90°, effects of M; and Ms on
filter performance are greatly reduced. As a result, effects of
M3 and Mg are significant so that the insertion voltage gain
of the filter is given by (1). This can be explained by the high
impedance of the inductor actually causing noise to propagate to
the load through the mutual couplings between the two capaci-
tors and between the input and output trace loops. In order to fur-
ther improve the EMI filter HF performance, M3 and Mg should
be minimized. Mg can be easily minimized by minimizing the
input and output trace loop areas. For M3, this paper introduces
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Fig. 5. EMI filter model with a cancellation inductor L.

a new technique to effectively cancel it and consequently dras-
tically improve filter HF performance

22U,

T = 2Y2 o ¥

Ts © 25 (M3 + Msg). )]

II. PARASITIC COUPLING CANCELLATION

In this paper, a cancellation turn is integrated with the capaci-
tors to cancel the parasitic coupling between the two capacitors.
Two approaches are investigated. For the first approach, a can-
cellation turn is in series with the input or output trace loop. For
the second approach, a cancellation turn is in series with either
capacitor C; or Cs. It can be shown that for the first approach,
the integrated cancellation turn can reduce both the coupling
between two capacitors and the ESL of the capacitor. Two mea-
sures are firstly taken before applying these two approaches to
the filter.

1) Input and output trace loops are reduced as much as pos-

sible to minimize mutual inductance My, M5, and Mg.

2) Inductor windings are rotated by 90° to reduce mutual

inductance My, M5, M4, and M5.

With the help of these two measures, the effects of My, M5,
and Mg are greatly reduced. Because the current loop areas in
the capacitors cannot be reduced, experiments show M; and
Mg, are still 7.5 nH [1] and cannot be ignored in comparison
with 14 nH ESL. M3 is the same as the original, because no
measure has been taken to reduce the coupling loop areas of
two capacitors.

A. First Approach

In Fig. 5, a cancellation inductor Ly, is introduced in series
with the input trace loop. It has mutual inductance My with
capacitor Co, Mp with capacitor C; and MC with inductor L.
As analyzed in Section I, in HF range current does not flow
through the inductor L, so the corresponding HF model of the
filter is simplified as in Fig. 6. The effects of My, My, and M
are ignored since no HF current flows through the inductor. The
equivalent HF model with a load Zp, and input voltage Vg is
shown in Fig. 7.

The load voltage V7, is then given as (2) shown at the bottom
of the next page. Obviously, the condition for zero load voltage
is given by

My = M. A3)
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Fig. 7. HF equivalent circuit for the filter.

This condition means the mutual inductance between the
cancellation inductor Ly and the capacitor C should be equal
to that between two capacitors. Furthermore, these two mutual
couplings should have opposite polarities to obtain the desired
cancellation effect just as shown in Fig. 5. The physical effect
of the cancellation is that the induced voltage in Cs, due
to the coupling between the cancellation inductor Ly; and
C,, cancels the induced voltage due to the coupling between
the two capacitors, because of opposite voltage directions. It
should be pointed out that if M is much larger than M3,
a large equivalent negative inductance can be detrimental to
filter performance. The proposed approach differs from the
existing self-parasitic cancellation methods in that the critical
mutual couplings are cancelled based on the understanding
of the whole filter. As a result, the HF performance of the
whole filter rather than a single component in the filter can
be significantly improved.

After M3 is cancelled, HF noise will propagate through the
inductor. As a result, the effects of My, Ms, and ESL can be-
come important. As stated in Section I, after the inductor wind-
ings are rotated by 90°, M; and M, have been reduced by more
than 90%. After introducing inductor Ly, the effects of M5 can
be further reduced because of the cancellation effects of induced
voltages in C;. Another benefit of this approach is that the ESL
of C; can be partly cancelled. Fig. 8 shows the equivalent cir-
cuit of Cq, which illustrates these two benefits. This equivalent
circuit including Mp and M is different from that in Fig. 7
because HF noise propagates through the inductor after M3 is
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cancelled. In Fig. 8, if Mp and M makes the equivalent in-
ductance smaller than ESL, the performance of capacitor C;
is improved.

B. Second Approach

In the second approach, the capacitor C; is split into two iden-
tical parts. As shown in Fig. 9, the cancellation turn Ly is in
series with the two split capacitors at the middle point. All the
mutual inductances between any two components are shown in
Fig. 9. The HF equivalent circuit is shown in Fig. 10. In Fig. 10,
if My + M = Mg (the mutual inductance between the split
capacitors and Cy should equal the mutual inductance between
the cancellation turn and Cs), then the output of the filter is
zero. However, the equivalent series inductance of the integrated
structure can be enlarged, because the inductance Ly of the can-
cellation turn can be larger than the sum of 2Mpg and 2Mg. The
couplings between the cancellation turn and capacitors should

Vi, =

Jw(Ms — Ma)Zy,

o jw(Mg — MA)(Z2 + ZL) + Zl(Zz + ZL +jw(M3 - MA))

Vs @
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Fig. 12. Mutual coupling between two capacitors.

have the same polarities as those shown in Fig. 9. The advantage
of this approach is that, the integrated capacitor is a two-terminal
component and the structure is symmetrical, which may benefit
manufacturing.

III. IMPLEMENTATION
A. Internal Structure of Film Capacitors

The commonly used dielectrics for DM EMI capacitors are
metallized film and paper. The commonly used capacitor shapes
are rectangular and tubular. The general internal structure of a
rectangular film capacitor is shown in Fig. 11 [10]. Electrodes
are metallized on one side of the plastic film. Two layers of films
are stacked and rolled together. The roll is then embedded in
resin filling and plastic coating. The ends are metal-sprayed and
wire leads are soldered on the two sides of the roll to conduct
the current. The film acts as the dielectric of the capacitor. The
current flow in the capacitor is also illustrated in Fig. 11.

In Fig. 11, the current is first conducted through the wire lead
and metal end-spray on one end of the roll. It then goes through
the electrodes and film dielectric. Finally, the current reaches the
wire lead and metal end-spray on the other end of the roll. The
electrodes and film dielectric therefore form a capacitor. Obvi-
ously, there is a current loop in the capacitor. It is this current
loop that links the external magnetic flux so as to generate mu-
tual inductance. This rule also holds true for capacitors in other
shapes.

B. First Approach

Based on the analysis in Section II, the mutual inductance M 4
between the cancellation inductor Ly; and capacitor Co should
equal the mutual inductance M3 between C; and C,. The mag-
netic coupling between C; and Cy is illustrated in Fig. 12.

In Fig. 12, the magnetic flux ®);3 produced by the current 22
in capacitor Cs links the current 41 in capacitor C;. The mutual
inductance M3 is defined by (4). It should be pointed out that
the current in the capacitor dielectric is displacement current

(41D, %2D)

[}
My = 2, 4)
12
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In Fig. 13, a cancellation inductor is added beside C;, where
the cancellation inductor is a 3/4 turn, which has a similar cur-
rent path as the capacitor. If @y is the magnetic flux produced
by C, which links the cancellation inductor Ly, the mutual in-
ductance M 5 between Ly and C, is then given by

M, = 2Ma 5)
i

Comparing (4) and (5), it is obvious that only when ®yra
equals @3 will Ma equal M3. It is difficult to theoretically
calculate the coupling area of the cancellation turn because of
the complicated magnetic flux distribution. However, the op-
timal coupling area of the cancellation turn can be tuned by
conducting experiments. In order to efficiently cancel M3, the
cancellation turn should also be close to capacitor C; so as to
be exposed to a similar external magnetic flux distribution to
that of C1. A good way to do this is to integrate the cancellation
inductor with the capacitor. Fig. 14 is the equivalent circuit of
Fig. 13.

Since commonly used capacitors are rectangular and tubular,
a cancellation turn will be applied to both shapes in this section.
Fig. 15 shows the equivalent circuit of the integrated capacitor,
where a cancellation inductor Ly is integrated with the capac-
itor. The mutual couplings between the integrated elements and
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Fig. 17. Prototype of the integrated tubular film capacitor.

external components are not shown in the figure. In this imple-
mentation, a cancellation turn, which is composed of 3/4 turn
of copper foil, is integrated in the film capacitor (Philips, MKP
0.47 uF/400 V). An isolation layer (FR4) covers the integrated
cancellation turn. Fig. 16 shows the exploded view of the pro-
totype. The three terminals in Fig. 16 correspond to those in
Fig. 15.

In order to effectively cancel M3, three measures are taken in

the design of the cancellation turn.

1) The plastic coating of the capacitor is removed and the
cancellation turn is glued as close as possible to the film
roll of the capacitor. This guarantees the cancellation turn
is exposed to a similar external magnetic field distribution
to the capacitor.

2) The cancellation turn covers the side and upper edges of
the film roll, so most of the flux that links the capacitor
also links the cancellation turn.

3) Because the HF current always flows through the inner
edge of the copper foil turn, the coupling area of the
cancellation turn is determined by the area enclosed by
the inner edge. The optimal area is tuned by conducting
experiments.

A prototype for a tubular shape film capacitor was also built
and is shown in Fig. 17. The cancellation turn is 3/4 turn wire
and the capacitance is 1 uF.

C. Second Approach

For the second approach, the equivalent circuit and structure
of the integrated capacitor are shown in Fig. 18. In the experi-
ment, two 0.39-uF film capacitors (Capl and Cap2 in Fig. 18)
and 3/4 turn copper foil are used for integration. The design of
the cancellation turn is similar to that in the first approach.

IV. EXPERIMENTAL RESULTS

In this section, the prototypes are tested both in one-stage
and two-stage EMI filters. For the first approach, both rectan-
gular and tubular capacitor prototypes are measured. The two
integration approaches are also compared through experiments.
The cancellation of mutual couplings and ESL are then quanti-
fied through the developed parasitic-extraction techniques [3].
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EMI filter using the capacitor with an integrated

Comparison of the measured results with the base line shows
the drastic performance improvement on filter HF performance.

A. Application to a One-Stage EMI Filter

In the experiment, the inductance of the filter inductor is
around 20 pH. The two measures proposed in Section II to
reduce My, My, My, M5, and Mg are first applied to the inves-
tigated EMI filter.

For the first approach, the prototype of the rectangular capac-
itor replaced C; in the filter, as shown in Fig. 19. The compar-
ative experimental results are shown in Figs. 20-22. All of the
mutual inductances are extracted using the developed S-param-
eters method [3]. Fig. 20 shows the impedances of M3 with and
without cancellation. The noise below 1 mS2 is the result of the
noise floor of the network analyzer.

Comparing the impedances above 1 mS2, inductance M3 is re-
duced from 249 pH to 19 pH which is a 92.4% reduction. Fig. 21
shows the impedance of capacitor C; with and without cancel-
lation. From the change of the series resonant frequency of the
capacitor, it is easy to derive that ESL of the integrated capacitor
isreduced from 12 nH to 4 nH which is a 67% reduction because
C1is known as 0.486 uF. The performance of the filter is shown
in Fig. 22. Three curves are compared. The base line case is the
insertion voltage gain without using mutual coupling cancella-
tion and 90° rotated windings. When the inductor windings are
rotated by 90°, the filter has about 5 dB improvement, as shown
by the second curve. The final case is the insertion voltage gain
of the filter with 90° rotated windings and mutual coupling can-
cellation. The insertion voltage gain is indeed below the noise
floor of the network analyzer above 1 MHz. The cancellation
of M3 and the ESL of capacitor C; results in a factor of 100
improvement (40 dB) in filtering performance at 30 MHz. The
noise in Fig. 22 is the noise floor of the network analyzer.
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mutual coupling cancellation for rectangular capacitors.

For the prototype of the tubular film capacitor, the measured
filter has the same structure as that in Fig. 19 except that two ca-
pacitors are tubular shapes and the capacitance is 1 yF. The mea-
sured three insertion voltage gains are shown in Fig. 23. From
Fig. 23, the filter with an integrated capacitor achieves 20 dB
improvement at 30 MHz compared with the base line. Based on
the results of these two experiments, it can be concluded that the
proposed method can be used for both rectangular and tubular
capacitors.

For the second approach, the measured filter has the same
structure as that in Fig. 19, except that the equivalent capac-
itance for C; is 0.195 pF and C2 is 0.39 pF. The measured
two insertion voltage gains are shown in Fig. 24. From Fig. 24,
the filter with an integrated capacitor achieves < —90 dB from
1 MHz to 13 MHz. The improvement above 13 MHz is still sig-
nificant although it is not as good as the first approach due to en-
larged ESL on C; . This also verified that the mutual inductance
between two capacitors is more important than the self-para-
sitics. Because the first approach has the better filtering perfor-
mance, it is preferred in this paper.
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B. Application to a Two-Stage EMI Filter

The prototype of the rectangular capacitor in the first ap-
proach is also applied to a two-stage EMI filter. The filter circuit
is shown in Fig. 25. The parasitic model is shown in Fig. 26 [3].
In the model, the mutual inductances between the input/output
trace loop and other components are ignored because the trace
loop area is kept very small. The mutual inductance Mg between
C; and Cj are very critical to filter HF performance for the same
reason they are critical in the one-stage EMI filter, which can be
illustrated by the comparative experiments in Fig. 27. In Fig. 27,
the base-line case is the insertion voltage gain of a two-stage
EMI filter. The second curve is the insertion voltage gain of the
filter when L1, Lo, and C, are disconnected from the filter. Ob-
viously, above 400 kHz, these two cases are almost the same,
so the filter performance is almost determined by the inductive
coupling between C; and C3 above 400 kHz. M;, M5, M3, and
M, are the mutual inductances between inductors and capaci-
tors. They also affect filter performance because of their effects
on capacitors. The gain dip around 200 kHz in the base-line
case is strongly affected by the mutual inductance M( between
two inductors [3]. This mutual inductance together with My, M3
resonates with C, so as to cause an impedance dip and there-
fore a gain dip at the resonant frequency. However, this gain
dip is desired because high attenuation is needed in the low
frequency range to attenuate switching noise. Based on these
analyses, two measures are taken to improve two-stage EMI
filter performance.

1) Capacitor C; is replaced by the integrated capacitor pro-

totype (rectangular shape) to reduce My.

2) The inductor windings are rotated by 90° to reduce

1\/[17 Mg, M3, and M4.

After these two measures are taken, the results of experiments

show the mutual inductance between C; and Cj; is reduced from
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110 pH to 14 pH which is an 87.3% reduction. The ESL reduc-
tion is the same as in the one-stage filter case. Fig. 28 shows
a comparison of the filter performance. The base-line case is
the insertion voltage gain of the filter without using 90° rotated
windings and mutual coupling cancellation. The second curve
shows the filter performance with the 90° rotated windings and
mutual coupling cancellation.

In Fig. 28, the measured insertion voltage gain is actually
lower than the noise floor (—90 dB) of the network analyzer
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above 400 kHz, which implies a very good HF filtering per-
formance. Compared with the base line, the performance
after using the mutual coupling cancellation is improved from
—60 dB to below —90 dB. More than 30 dB improvement is
achieved at 30 MHz. Although the cancellation turn can also
cancel M; and Mj3, it is not as important as the cancellation of
M.

It should be pointed out that because the cancellation turn
already cancels My, only one of the two capacitors is needed
to be replaced by the integrated capacitor on the two sides of
the filter. For the electromagnetic interference from the outside
of the filter, it is also expected that the cancellation turn can
at least partly cancel these effects on the capacitors because of
the opposite coupling polarities between the capacitor and the
cancellation turn.

V. CONCLUSION

This work first identified the critical mutual couplings in EMI
filters. These critical couplings are the mutual inductances be-
tween the input and output capacitors, between capacitors and
inductors and between input and output trace loops. The latter
two critical couplings can be overcome by rotating inductor
windings by 90° and minimizing input/output trace loops. A
cancellation inductor is proposed in this paper to cancel the mu-
tual inductance between the two capacitors. This cancellation
inductor can also partly cancel the ESL of the capacitors. A can-
cellation turn working as the cancellation inductor is then inte-
grated into a capacitor. Two different integration approaches are
investigated and compared. Prototypes are finally tested in both
one-stage and two-stage EMI filters. Experiments show that the
proposed method works well for both rectangular and tubular
film capacitors. The cancellation effects of the cancellation turn
on the mutual inductance between the input and output capaci-
tors and on the ESL of a capacitor are quantified through exper-
iments. The measurements show the cancellation approach can
achieve <—90 dB improvement in filtering performance above
1 MHz for one-stage filters and the same above 400 kHz for
two-stage EMI filters.
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